
Week 14 - Monday



 What did we talk about last time?
 Sorting visualization
 Timsort
 Tries









 We can use a (non-binary) tree to record strings implicitly where 
each link corresponds to the next letter in the string

 Let's store:
 ba
 bar
 bat
 barry
 can
 candle
 as
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 Let m be the length of a particular string
 Find Costs:
 O(m)

 Insert Costs:
 O(m)



public class Trie {
private static class Node {
public boolean terminal = false;
public Node[] children = new Node[128];

}

private Node root = new Node();
}



Signature for recursive method:

private static boolean contains(Node node, String 
word, int index)

Called by public proxy method:

public boolean contains(String word) {
return contains(root, word, 0);

}



Signature for recursive method:

private static void insert(Node node, String word, 
int index)

Called by public proxy method:

public void insert(String word) {
insert(root, word, 0);

}



private static void inorder(Node node, String prefix)

Called by public proxy method:

public void inorder() {
inorder(root, "");

}



 Keeping an array of length equal to all possible characters 
(usually) wastes space

 Alternatives:
 Ternary search tries: A lot like a binary search tree, with smaller 

characters to the left, larger characters to the right, and 
continuations from the current character beneath
 Keeping an array (or linked list) of the characters used, resizing as 

needed





 Finding a string within another string is a fundamental task
 Applications:
 Finding text on a web page
 Find/replace while word processing
 Looking for DNA subsequences within a larger sequence
 Countless others …



Write a method to find needle in haystack, returning the 
starting index of needle in haystack or -1 if not found.

public static int find(String needle, 
String haystack)



 How long does the brute-force substring search take if the 
length of haystack is n and the length of needle is m?

 There are n – m + 1 positions to start looking in haystack, and 
you have to check m characters for each position

 m(n – m + 1) is Θ(nm)
 Note that m is usually much smaller than n



 A cleverer approach to substring search uses the observation 
that the act of matching tells us what to do when we reach a 
mismatch:

 Needle: BARBED
 Haystack: BARBARBED

 On mismatch, skip ahead to:

B A R B A R B E D

B A R B E

B A



 It depends on the structure of needle
 Some strings will have repetitive substrings that will 

"rematch" part of the substring
 Some strings will need to jump back to the beginning
 We could map these transitions out with a deterministic 

finite automaton (DFA)



 Consider this DFA:

 State 0 is the initial state
 The circled state (2) is an accepting state
 Is the string AAAAABBA accepted?
 What about the string BBBBBBAB?
 What's a verbal description for the strings accepted?
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 Make a DFA that accepts all strings that have an even number 
of A's and an odd number of B's



 DFAs can be created to accept many different patterns of 
strings

 They are equivalent to regular expressions
 Fortunately the DFAs needed for the Knuth-Morris-Pratt 

algorithm are easy to construct



 Needle string: ABABAC
 Corresponding DFA:
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 The algorithm for constructing the DFA is not obvious, but the code isn't 
very complex

public static int[][] makeDFA(String pattern) {
final int M = pattern.length();
int[][] DFA = new int[128][M];
// for all ASCII characters
DFA[pattern.charAt(0)][0] = 1;
for (int x = 0, i = 1; i < M; ++i) {

for(char c = 0; c < 128; ++c)
DFA[c][i] = DFA[c][x];

DFA[pattern.charAt(i)][i] = i + 1;
x = DFA[pattern.charAt(i)][x];

}
return DFA;

}



 Once you have the DFA, you can use it to search

public static int find(String text, int[][] DFA) {
final int M = DFA[0].length;
int i, j;
for(i = 0, j = 0; i < text.length() && j < M; ++i)

j = DFA[text.charAt(i)][j];

if(j == M)
return i - M;

else
return -1;

}



 If the length of the pattern is m, it takes m time to make the 
DFA
 Actually, it's like 128m or |Alphabet|m, but the size of the alphabet 

will always be constant 
 If the length of the text is n, it takes at most n time to do the 

search (often better if we make a match)
 Total running time is thus Θ(n + m)
 This improvement over brute force can be significant when n

is large (as it often is)



 The KMP algorithm can process the text as a stream (without 
backing up or looking at more than one character at a time)

 You can't do better than KMP in the worse case
 However, Boyer-Moore substring looks for mismatched characters 

and can perform better in practice (but relies on analysis of 
random strings)

 Rabin-Karp constructs a fingerprint (a hash) of  a sliding window of 
m characters
 But there's always a chance that you match a substring that just happens 

to have the same hash







 Review up to Exam 1 next Monday



 Work on Project 4
 Review up to Exam 1
 Have a great Thanksgiving!
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