
Week 14 - Monday

 What did we talk about last time?
 Sorting visualization
 Timsort
 Tries

 We can use a (non-binary) tree to record strings implicitly where
each link corresponds to the next letter in the string

 Let's store:
 ba
 bar
 bat
 barry
 can
 candle
 as

a

s

b

a

r

r

y

t

c

a

n

d

l

e

 Let m be the length of a particular string
 Find Costs:
 O(m)

 Insert Costs:
 O(m)

public class Trie {
private static class Node {
public boolean terminal = false;
public Node[] children = new Node[128];

}

private Node root = new Node();
}

Signature for recursive method:

private static boolean contains(Node node, String
word, int index)

Called by public proxy method:

public boolean contains(String word) {
return contains(root, word, 0);

}

Signature for recursive method:

private static void insert(Node node, String word,
int index)

Called by public proxy method:

public void insert(String word) {
insert(root, word, 0);

}

private static void inorder(Node node, String prefix)

Called by public proxy method:

public void inorder() {
inorder(root, "");

}

 Keeping an array of length equal to all possible characters
(usually) wastes space

 Alternatives:
 Ternary search tries: A lot like a binary search tree, with smaller

characters to the left, larger characters to the right, and
continuations from the current character beneath
 Keeping an array (or linked list) of the characters used, resizing as

needed

 Finding a string within another string is a fundamental task
 Applications:
 Finding text on a web page
 Find/replace while word processing
 Looking for DNA subsequences within a larger sequence
 Countless others …

Write a method to find needle in haystack, returning the
starting index of needle in haystack or -1 if not found.

public static int find(String needle,
String haystack)

 How long does the brute-force substring search take if the
length of haystack is n and the length of needle is m?

 There are n – m + 1 positions to start looking in haystack, and
you have to check m characters for each position

 m(n – m + 1) is Θ(nm)
 Note that m is usually much smaller than n

 A cleverer approach to substring search uses the observation
that the act of matching tells us what to do when we reach a
mismatch:

 Needle: BARBED
 Haystack: BARBARBED

 On mismatch, skip ahead to:

B A R B A R B E D

B A R B E

B A

 It depends on the structure of needle
 Some strings will have repetitive substrings that will

"rematch" part of the substring
 Some strings will need to jump back to the beginning
 We could map these transitions out with a deterministic

finite automaton (DFA)

 Consider this DFA:

 State 0 is the initial state
 The circled state (2) is an accepting state
 Is the string AAAAABBA accepted?
 What about the string BBBBBBAB?
 What's a verbal description for the strings accepted?

0 1 2

A

A

B
BA

B

 Make a DFA that accepts all strings that have an even number
of A's and an odd number of B's

 DFAs can be created to accept many different patterns of
strings

 They are equivalent to regular expressions
 Fortunately the DFAs needed for the Knuth-Morris-Pratt

algorithm are easy to construct

 Needle string: ABABAC
 Corresponding DFA:

0 1 2

C

A BB

B, C A

3 4 5 6
A A C

B, C

C

A

B, C

B

A

 The algorithm for constructing the DFA is not obvious, but the code isn't
very complex

public static int[][] makeDFA(String pattern) {
final int M = pattern.length();
int[][] DFA = new int[128][M];
// for all ASCII characters
DFA[pattern.charAt(0)][0] = 1;
for (int x = 0, i = 1; i < M; ++i) {

for(char c = 0; c < 128; ++c)
DFA[c][i] = DFA[c][x];

DFA[pattern.charAt(i)][i] = i + 1;
x = DFA[pattern.charAt(i)][x];

}
return DFA;

}

 Once you have the DFA, you can use it to search

public static int find(String text, int[][] DFA) {
final int M = DFA[0].length;
int i, j;
for(i = 0, j = 0; i < text.length() && j < M; ++i)

j = DFA[text.charAt(i)][j];

if(j == M)
return i - M;

else
return -1;

}

 If the length of the pattern is m, it takes m time to make the
DFA
 Actually, it's like 128m or |Alphabet|m, but the size of the alphabet

will always be constant
 If the length of the text is n, it takes at most n time to do the

search (often better if we make a match)
 Total running time is thus Θ(n + m)
 This improvement over brute force can be significant when n

is large (as it often is)

 The KMP algorithm can process the text as a stream (without
backing up or looking at more than one character at a time)

 You can't do better than KMP in the worse case
 However, Boyer-Moore substring looks for mismatched characters

and can perform better in practice (but relies on analysis of
random strings)

 Rabin-Karp constructs a fingerprint (a hash) of a sliding window of
m characters
 But there's always a chance that you match a substring that just happens

to have the same hash

 Review up to Exam 1 next Monday

 Work on Project 4
 Review up to Exam 1
 Have a great Thanksgiving!

	COMP 2100
	Last time
	Questions?
	Project 4
	Tries
	Storing strings (of anything)
	Trie this on for size
	Cost
	Trie implementation
	Trie Contains
	Trie Insert
	Trie Traversal
	Trie implementations
	Substring Search
	Substring search
	Brute-force substring search
	Running time
	Knuth-Morris-Pratt
	How do we know where to skip to?
	DFA example
	DFA practice
	Using DFAs
	KMP DFA example
	Making the DFA
	Using the DFA
	Running time
	Other approaches
	Quiz
	Upcoming
	Next time…
	Reminders

